
User Guide

SDP Group 15-H

Emilia Bogdanova
Patrick Green

Julijonas Kikutis
David McArthur
Aseem Narang
Ankit Sonkar

The University of Edinburgh

Contents

1 Installation 1
1.1 Cloning the repository and setting up . 1

2 Hardware overview 1
2.1 Motors . 1
2.2 Sensors . 2

3 Usage 2
3.1 Preparation for the match . 2
3.2 Robot calibration . 3

4 Software overview 3
4.1 Running instructions . 3
4.2 Calibration of the vision . 5

5 Troubleshooting guide 6

1 Installation

1.1 Cloning the repository and setting up

To clone the repository, execute in terminal:

$ git clone https://github.com/julijonas/venus.git

Then go to the root directory of the project and create a Python virtual environment
which will contain a local copy of the libraries needed for this project:

$ cd venus

$ virtualenv --system-site-packages env

$ source env/bin/activate

Install the pyserial library which is used to send data to Arduino through RF stick:

$ pip install pyserial

To set the persistent radio chip configuration for a new Arduino board, connect to the
PC with an USB cable, execute screen /dev/tty0 in terminal, and enter the following
commands substituting the appropriate group number and radio frequency band:

+++

ATID0015

ATAC

ATRP1

ATAC

ATCN80

ATAC

ATWR

ARDN

To close screen, press Ctrl+A and then X. The identical steps have to be performed for
a new RF stick.

To program the Arduino to receive and execute messages, open the Arduino IDE by
executing arduino in terminal. You’ll need to add three libraries which can be found
under arduino/ in the project directory: ArduinoSerialCommand, SDPArduino, Sim-
pleTimer. In order to add a library, go to Sketch -> Import Library... -> Add Li

brary... and choose the library directory you want to import. Then open the Arduino
file arduino/arduino.ino using File -> Open... and upload it to the board using File

-> Upload.

2 Hardware overview

2.1 Motors

The wheels are powered by NXT motors on a gear system of 2 : 1. A reduction of
power of one wheel can be caused by the gears slipping out of line. The driving motors

1

are labelled 0 to 3 from the back right clockwise. Simple motions can be tested using
the move direction angle turn angle command where direction angle defines the
movement vector and turning angle defines the rotation whilst moving on that vector.
The gears in the grabber can come out of line as well when crashing so ensure that when
open the enter arm span occurs. The grab has a motor on one arm and uses a gear ratio of
25 : 10 : 10 : 25 to ensure each arm is opened at the same rate and in the correct direction.
A mini motor is used for this and therefore the actual motion is calibrated using a time
step and not encoders. Please see the Technical Specification for an explanation of the
kick. As it relies on timing, the open grabber with a spin jammed grabber arms can
reduce accuracy.

2.2 Sensors

Each NXT motor is connected to the rotary encoder board see the specification for an
image. The connections in the anticlockwise order from the top are: the I2C bus to the
Arduino, back right motor, back left motor, front left motor, and front right motor. Using
this board the information about the amount of rotations the motor has performed since
the last query is available for the Arduino code as a separate integer for every motor.
Every 5 ms the board is queried whether the target value has been reached. After the
average of the rotary values of all four motors becomes greater or equal to the target
value, the motors are stopped. If plugged in incorrectly motors will run continuously
regardless of encoder value.

The light sensor is located above the grabber. The sensor returns a value associated
with the reflected colors in its line of sight. Then the Arduino compares that value to
a predefined threshold corresponding to the red ball. Sometimes a white line inside the
pitch can be mistaken for the ball noticeable in the games as a random kick whilst in a
state of grabbing. Ensure query ball is working before playing and adjust the threshold
as outline in calibrations.

3 Usage

3.1 Preparation for the match

In order to turn the robot on, connect the battery pack to the power board. The pack
consists of 10 AA rechargeable batteries. Normally one fully charged battery pack lasts for
7-10 minutes after which a noticeable under-turning will occur. Ensure that the battery
back is placed directly in the center as a change in weight distribution can require a
recalibration of moving, turning, and kicking.

To communicate with Venus, the RF stick should be connected to the machine you are
running the commands from. Then after performing steps described in Section 4.1, you
will be able to operate the robot.

If you make any changes in the Arduino code, you need to upload them before running
the commands as detailed in Section 1. Uploading can be done either via the RF stick
or USB cable connected to the Arduino board.

2

NB: If another robot is doing the kick-off in a game, do not start the strategy by typing
hs before that robot performs the kick-off.

3.2 Robot calibration

Before playing a match, ensure that the spin-kick using goal, forward motion using f,
and turning using c are calibrated correctly. This can be done by repeatedly executing
the respective commands with different input values, changing the data points in the
calibration.ods spreadsheet, and putting the resultant equations from the spreadsheet
to ee, f, and c methods in control/holonomic.py.

Figure 1: Different shooting zones

When calibrating the spin-kick the aim is for the
robot not to be fully turned towards the goal be-
fore the kick. To achieve that, there are different
”correction angles” for the six main zones of the
pitch as seen in Figure 1. These angles can be
calibrated in strategy/simple holonomic.py in
shot correction method.

The best strategy here would be to place the robot
with the ball in different sections of one zone
and execute the goal command choosing a con-
stant for the optimum orientation that achieved
the best result. Another important calibration is
checking whether the light sensor threshold correctly identifies the grabbed ball and lack
thereof. The threshold is defined in the query ball method in control/holonomic.py.

4 Software overview

4.1 Running instructions

Run the following command in the terminal from the project root directory if it has not
been done already to enable the Python virtual environment which contains the required
libraries:

$ source env/bin/activate

In order to set the room containing the pitch, colors of the robot, and side of the goal,
change the hard-coded parameters of init method in control/holonomic.py as detailed
in Table 1. For example, if the room is 3.D04, the robot has the yellow team color and
one green-coloured dot, and the robot is defending the goal closer to the computers, the
line would be:

def init(self, room_num=1, team_color=’yellow’, our_color=’green’,

computer_goal=True):

3

Room room num team color our color computer goal

3.D03 0 ’yellow’ ’green’ True
3.D04 1 ’blue’ ’pink’ False

Table 1: Allowed parameters for the init method

Then ensure that the RF stick is plugged in. To start the application, make connections
to the RF stick, vision feed, and get access to the command prompt, execute the following
line:

$ python main.py

NB: In case you make changes to the Arduino code, you should upload your changes to
the board as detailed in Section 1.1.

Then the operator of the robot can start entering the commands. The main command is
hs which starts the strategy. The listing of all commands is provided in Table 2.

Constantly run the strategy state machine hs

Output a picture of the potential field of the state map state name

Perform a holonomic motion (angles in degrees) move direction angle turn angle

Move forward (in cm, negative means backward) f distance

Rotate clockwise (in degrees, negative means anti-
clockwise)

c angle

Stop all motors s

Open the grabber o

Close the grabber g

Perform a spin kick ee

Print world state w

Query light sensor query ball

Pass the ball to the teammate pass ball

Catch the ball coming from the teammate catch ball

Kick the ball to the goal goal

Exit the application exit

Table 2: Commands available for the operator of the robot

The goal and pass ball commands perform shooting. First, the robot turns so that the
optimum orientation is met. Then, an additional grab is done followed by a kick initiated
through the ee command. Sleep is added before the kick to reduce the irregularities in
motor powers caused by the previous movement. The catch ball command moves the
robot to face its team mate. A grab is initiated once vision detects that the ball is within
a range of 32 cm set exactly for vision feed speed dependent on camera. If the ball never
enters this range and stops moving, vision detects this which exits the command. The
ee command instigates a kick by opening the grabber and spinning for an encoder value
of 200, in that order. Irregularities in accuracy can come from both running over white
tape on the pitch and also battery level.

4

4.2 Calibration of the vision

Camera capture settings: As the images appearance can change between computers
you may need to slightly adjust the capture settings. This simple calibration is always
more preferable than going for a complete calibration. In which case use the slider bars
that pop up on the vision feed each corresponding to a percentage as seen in Figure 2.
Brightness and contrast can help make the colors more distinguishable and a larger con-
trast than brightness works better. Reducing the saturation can help remove unwanted
spots from the blurred colors created by the white lines.

Figure 2: Vision feed window

Color calibration: To enter the complete calibration
mode the slider bar named calibration must be moved.
The first step is to click and the terminal will outline
everything that can be calibrated as seen in Figure 3.
Each option is activated by pressing a key outlined
in the terminal. For colors it is advised to click on
that coloured spot a few times. Be sure to check the
terminal to make sure your on the right color. For pitch
dimensions a description of how to click each object is
added in the terminal. The general convention is any
order to mark the goals and for shapes start at the top
left and work clockwise. Once you ready to move on
press the ESC key.

Fine tuning the colors: Once the ESC key has been
pressed the color thresholds predicted from the clicking
can be fine tuned in various windows similar to the
window in Figure 4. If nothing is visible, it is advised to reduce saturation and value first
before adjusting the hue values. The aim is to see as minimal of spots not in that color
as possible and make the actual color as solid as possible. Press the ESC key to move on

Figure 3: Calibration window Figure 4: Color tuning window

5

and eventually the original vision system will be brought up.

Green and yellow: As they can blend together easily it is important that they can be
seen clearly so try to reduce the hue threshold of yellow and increase the hue threshold
of green as much as possible.

Red and pink: Sometimes the ball cannot be found so if you enter the calibration and
press ESC instantly you will only be adjusting reds thresholds. The tuning window for
red requires you to adjust to separate ranges of values so make sure this is done to get
as clear spot as possible. Its similarities with pink can be avoided after calibrating by
adjusting the slider bars for the camera capture settings.

5 Troubleshooting guide

Problem 1: When uploading the code to the Arduino board, the error message appears:

processing.app.SerialNotFoundException: Serial port ’<port>’ not found. Did you

select the right one from the Tools > Serial Port menu?

Solution: Make sure you are not running the Python application at the same time or
have not opened the serial interface any other way when the changes are being uploaded.
The Arduino IDE is only able to program the Arduino when the serial interface of the
RF stick or Arduino itself is registered as /dev/ttyACM0 on the PC. If there are other
programs accessing /dev/ttyACM0 and the RF stick or USB cable is unplugged and
plugged again, the ”new” device is issued /dev/ttyACM1 instead by the Linux kernel.

Problem 2: When sending commands the robot does not respond although it should.

Solution: Power cycle the Arduino board.

Problem 3: The Python application cannot connect to the RF stick because the RF
stick has registered itself as /dev/ttyACM1.

Solution: Either close all programs that have handles to /dev/ttyACM0 and reconnect
the RF stick or change the device no parameter in the connect method in holonomic.py

to 1 and restart the Python application.

Problem 4: The commands are evidently sent but the robot does not move.

Solution: Power cycle the Arduino. If that does not help, change the battery set to a
fully charged one.

6

	Installation
	Cloning the repository and setting up

	Hardware overview
	Motors
	Sensors

	Usage
	Preparation for the match
	Robot calibration

	Software overview
	Running instructions
	Calibration of the vision

	Troubleshooting guide

