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1 System architecture

The oldest system called the Milestone Venus had a simple structure as seen in Figure 1.
Commands were complete once a predefined rotary value was obtained. This was used to
calibrate the four motions and did not stretch the capabilities of the robot.

Figure 1: The architecture of Milestone Venus

The updated system in Figure 2 used the value of a potential field obtained by summing
up the contributions of all obstacles in the pitch each having a particular type of a field.
The robot was modelled as an automaton in a finite grid with each square having its own
potential. Using calibrated swerving motions from square to square the pitch could be
navigated intelligently. Navigational motions were added to a job list on the Arduino. This
ensured that the motion was continuous and not affected by lag. The high level planning
was implemented by a state machine that controlled the on/off switches for each obstacles
field and various addition fields imitating behaviours such as intercept and grab ball. These
addition fields worked for all possible situations in the game unlike the method built for the
Milestone Venus. The potential fields could be compounded together into states without
difficulties, making high level planning easier to test and modular unlike the set of commands
built in the Milestone Venus.

Figure 2: The architecture of Venus 1.0

For the final system in Figure 3 the first large change was to the robot itself which was
redesigned to be four wheel holonomic. After re-calibrations with encoders simple motions
like kicking and grabbing were implemented using the original system that waits until the
first motion has stopped. On top of this, the move forever method was added to the firmware,
which meant that movements as granular as the latency of the communications system could
be achieved. Using this, a planner was built that provided the movement trajectories of the
robot to be calculated straight from a vector field created from our potential fields in the
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previous design. This not only made the robot faster but it meant that it could deal with
more complicated mazes of potentials not capable by the Venus 1.0 as previously it could
not change direction sharp enough. Also, although the move forever function relied solely
on the vision, it still proved more precise than the job scheduling from the previous design
as the old robot would often move out of alignment with the grid to which its motions were
confined. Moreover, the final system relaxed the undistortion of the vision feed to increase
the reaction speed of the robot. By removing its lag it was able to keep up more accurately
with the pace of the game.

Figure 3: The system architecture of Venus 2.0

2 Hardware components

2.1 Chassis structure

To obtain more constant torque both designs used the nxt motors for movement. However
as the rear wheel in version 1.0 was not powerful enough to swerve the robots orientation
with enough granularity, the robot chassis was rethought.

Figure 4: Visualisation of the calculating the
motor power components

The final design uses a four wheeled holo-
nomic base instead of our three wheeled
one. It enabled fast motion in any direction
meaning the robot could respond quickly to
a change in play. Using vector fields a given
direction could be implemented instantly.
The motion was constructed by calculating
the angle between the desired direction and
the robot orientation x. This was used to
compute the driving components that were
sent to the Arduino as seen in Figure 4.
The matrix multiplication below was used
to extract the driving powers and then each
power was scaled up by a factor of 100 di-
vided by the absolute maximum of the four
motor powers.

2




MOTOR 0
MOTOR 1
MOTOR 2
MOTOR 3
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1 0
0 −1
−1 0
0 1

(cos(45− x)
sin(45− x)

)

2.2 Weight distribution

To simplify holonomic calculations, except for the grabber the final robot is completely
symmetrical in two planes. The majority of the weight coming from the batteries and motors
are placed directly in the middle for stability to evenly distribute the weight between each
wheel. The previous design was a lot heavier towards the rear due to the amount of space
needed for the kicker causing different forward and backward motion calibrations. This
prevented us from obtaining accurate swerving and led to us scraping the chassis structure
for the current four wheeled design.

Figure 5: Venus 2.0 Figure 6: Venus 1.0

2.3 Grabber and kicker

The grabber consists of two symmetric parts placed one slightly above the other as seen in
Figure 5. To keep the robot within dimensions the grabber arms overlap enabling a large
span but still within regulations when closed. A symmetric gear system is used so that both
arms are opened and closed at the same time. Unlike the original design shown in Figure 6,
the arm axles were placed closer together so that the grabbed ball would always be in the
same position increasing the reliability of the sensor and the kick.

The newest design does not have a kicker. Instead, the kick is made by turning the robot
and opening the grabber at the same time. The main incentive of this design was to reduce
the asymmetric weight distribution which would have been catastrophic in optimising the
holonomic movement. The robot rotates in the intended kick direction when it is aligning
itself with the goal. In doing this the centrifugal force holds the ball towards the end of
the grabber and the ball is in contact with the claw that will apply the kicking force. This
increases the accuracy of the kick as the ball always starts in a similar position. As the error
margin of the kick is asymmetric and biased towards undershooting, the kick is initiated in
different directions in different positions on the pitch. The y dimension is split into four
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Figure 7: Correct kick rotation Figure 8: Incorrect kick rotation

segments: 0, 1
4
, 1

2
, and 3

4
. In Figures 7 and 8 the robots demonstrate each segment and

its correct and incorrect kick directions. This kicking mechanism is not only more powerful
than the previous design but it is also able to confuse the defence strategies of opponents
tournament1.

2.4 Sensors

Figure 9: The rotary encoder board Figure 10: The light sensor with the ball

Rotary encoder board

The exact configuration of the rotary encoder board is specified in the User Guide. The
decision behind using NXT motors as opposed to other motors was directly because the
NXT motors are the only ones that have encoders. Controlling and stopping movement
after specific numbers of rotary values was retained between the iterations of the design
because it worked well. Also, the usage of encoders is essential for the ball grabbing task,
because the computation of precise conversions between the rotary values and centimetres
allowed the robot to grab ball from corners of the pitch and near walls.

Light sensor

The light sensor functionality is explained in the User Guide and can be seen in Figure 10.
The decision to use this particular sensor was a downside to the robot and in case the robot
is built again it would be recommended that a more reliable one is used instead.

1Footage of one such example of a confusing spin kick is available at https://youtu.be/VJLo2x2gdGk.
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3 Documentation of the code

main.py

run prompt
in prompt.py

Commands in
holonomic.py

Protocol in
protocol.py

External se-
rial module

Shared state
in world.py

Vision in vision.py
(separate process)

Simple moves in
simple holonomic.py

State machine in
highstrategy.py

Field definitions of
states in game.py

Collection of fields
in potential field.py

Individual fields
in potentials.py

Figure 11: Dependency graph of Python modules in the system

The code is subdivided into several Python modules as seen in Figure 11. The module main
is used to launch the prompt module. The commands in the prompt are provided by the
commands module. It creates instances of protocol, vision, and state machine objects from
the respective modules. The vision object is run on a separate thread to process frames
asynchronously with constantly updated shared world state kept in a World object. At
the same time the prompt is provided for the user. The command to run the strategy is
called hs. This command constantly queries the state machine in the highstrategy module.
The state machine checks the world state to decide which state it is currently in and then
performs the associated action. It is done either by handing over the execution to game
module to construct a potential field and perform the best action based on it or performing
a predefined move from the simple holonomic module.

All code except the color calibration user interface in the vision module is an original work.
Libraries used are pyserial, numpy, scipy, and OpenCV.

3.1 Communications

The communication interface between the Arduino and PC is low level as the PC decides
and specifies the individual motor numbers and rotary encoder value or time duration for
which they will be powered. Then the Arduino sends acknowledgement to the PC about
the arrival of the command, turns the motors on, and sets the specified timeouts to stop
them. The messages are human-readable, newline-terminated and tokens inside them are
separated by spaces. The specified motor power can be negative, in which case it means
backwards direction. Each message which changes the state of the robot has a sequence
number and checksum that are checked in the Arduino. The messages used in the protocol
are listed in Table 1. The communication messages are constructed in the Protocol class
using methods named after the corresponding message in control/protocol.py and these
are used in the motion commands in control/holonomic.py.
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Rotate the motors for nconstructed a ms M seqNo checksum n motorNo power...

Rotate the motors for n rotary values R seqNo checksum n motorNo power...

Rotate the motors indefinitely V seqNo checksum motorNo power...

Stop all motors S seqNo checksum

Return D if all motors are stopped I

Handshake, reset the sequence number H

Query light sensor, return D or N A threshold

Transfer a byte to I2C bus T byteInDecimalASCII

Table 1: Messages available in the protocol

3.2 Arduino

Read command and arguments with SerialCommand

Type of
command

Check
checksum

Move for rotary
value (R)

Stop

Invalid

Start motors
with SDPArduino

Valid

Set target average

Is target
reached?

On next timeout

No

Stop motors

Yes

Check
checksum

Move for time value (M)

Stop

Invalid

Start motors
with SDPArduino

Valid

Set timeouts

Stop motors

After timeout expires

Request from
digital port

Query sen-
sor (A)

value >
threshold

Send D

Yes

Send N

No

Figure 12: Flowchart of message processing in the Arduino

The Arduino code uses the SerialCommand library to buffer and tokenize the commands
received over the serial link. Messages changing the world state are sent with a sequence
number and checksum which is the sum of all the parameters following it. If the sequence
number matches the one from the last command, acknowledgement is sent but no further
work is performed for the duplicate message. This handles the situation arising when an
acknowledgement from the Arduino does not reach the PC and and the PC generates a
duplicate message. If the checksum does not match, the Arduino code ignores the message
and does not send an acknowledgement, thus forcing the PC to send the same message
again.

If any of the motor move commands are sent, the motors are started immediately using the
SDPArduino library. Then the Arduino schedules when to stop the motors and there are
two methods to perform that: either a time value or rotary encoder value. The flowchart
for these two methods, along with querying the light sensor, are detailed in Figure 12. In
the case of the time value, a timeout is set to stop each single motor using setTimeout from
the SimpleTimer library. In the case of rotary encoder value, setInterval is used which calls
a function every 5 ms that queries the rotary encoder board and stops the motors when the
average of all four motor rotary encoder values reaches the target value. These approaches
using timers allows the robot to receive commands asynchronously, that is, a command is
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not blocking during its execution and the PC software could, for example, send another
command simultaneously to engage the kicker while the robot is in motion. The Arduino
message handling is located in arduino/arduino.ino file.

A buffer of upcoming motor jobs has also been implemented in the Arduino code to ensure
continuous motion but it was deemed unnecessary as vision could issue new commands
quickly enough without the robot coming to halt. The current implementation also never
stops a motor when a new command arrives for the same motor, instead it just executes the
new command, ensuring continuous motion.

3.3 Vision

In order to detect the robots and ball the following steps are executed:

1. The dictionary of the camera capture settings (brightness, contrast, hue and satu-
ration) are read from room0/1.txt, pitch dimensions from pitch0/1.txt, and color
thresholds from color0/1.txt.

2. The aforementioned settings are used, a frame is read, and the Gaussian blur is applied
to create more solid features.

3. A unique application to speed up the feed is the variable world.undistort which lets
the strategy to conditionally remove the barrel distortion when it is unnecessary.

4. All color thresholds are added to the same mask and K-means is used to group them
together to form various spots in the image.

5. Then the color is found from the center pixel of the cluster. The spot is either kept or
removed depending on the minimum area for that color which varies as some colors
are more difficult to see.

6. The individual methods required for finding the robots and ball are then implemented
as outlined below.

7. When the vision system is closed using the escape key, the most recent calibration
values and the current camera settings defined by the slider bars are saved and can be
used on the next execution.

3.3.1 Finding the ball

The algorithm looks for 10 red spots and checks through them in the order of descending
area. To prevent a pink being misclassified as the ball, each red spot is checked whether
it exists close to the centres of the robots. As the robots can shield the ball from view, a
method is used which determines whether a specific robot is in range of the ball. If so, when
the ball is shielded, an imaginary ball is placed along the orientation vector of that robot
until the ball is found. This method is in place for all robots except for Venus because the
sensor is being used instead to determine whether Venus has the ball.

3.3.2 Finding the robots
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Figure 13: The vision feed with
robots enumerated

Due to the varying light intensities over the pitch a
highly tolerant method of identifying robots is used.
The robot identities are pre-defined and dependent
on the choice of the center and corner spot as seen on
the right. Numbers are assigned sequentially to our
robot, teammate, first enemy, and second enemy as
seen in Figure 13.

There are two independent ways the robot can be
identified:

The three spot method: Finds the largest of the three distances be-
tween spots, then draws a vector from the midpoint of this edge to the
spot not included in the edge. The orientation is then computable by ro-
tating this vector by a fixed amount. Then, the robot center is calculated
using the average of the spot centres.

The two spot method: As each spot is distinguishable, a vector can
be constructed between the center spot and the corner spot and rotated a
fixed amount to find the orientation. Then, the robot center is calculated
using the center spot.

As there will always be two robots with the same plate configuration required for the meth-
ods above, the algorithm needs some of the robots to be identified using more information.
As seen above, the robots from the same teams will have the same two spot plate configu-
ration. Also, for the three spot method the robots 0, 2 and 1, 3 will have the same plate
configurations. To solve this, the spots are initially grouped together into potential robots
in the order of descending areas. The groups are run through several filters for each type of
robot accepting the groups if there exists a specific numbers of coloured spots. Each spot
that is found is circled with its respective color on the vision feed. The sets of spots on the
filers bellow correspond to finding the robot zero.
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FILTER 1 { }
To pass into here it must have a cor-
rect team spot and no other visible
team color. It must also have three
of its three spot color.

FILTER 2 { , }
To pass into here it must have a cor-
rect team spot. It also must have
more than one of its three spot color
or less than two of its corner spot
color.

FILTER 3 { , , }
To pass into here no team spot is re-
quired, it must only have more than
one of its three spot color or less than
two of its corner spot color.

As each identity is found, its corresponding filters are blocked and its position is noted so
that a robot does not get detected in the same place as the one that is already detected.
Once any group of spots gets through a filter of a given identity, the identity of that robot is
then updated using either the three spot or two spot method depending on what information
is available. If a robot is not found, it keeps its original position. To handle cases where
robots are lifted off the pitch, the system creates a ghost robot marked in blue on the vision
feed. This tells the strategy to ignore the contribution to the game of that robot but the
robot continues existing on the pitch in the vision thread.

3.4 Strategy

3.4.1 Higher-level strategy

At a higher level the strategy system consists of a list of states, triggered in a specific
order of priority. The states and their triggers can be seen in Table 2. To have a better
understanding of the world the following methods are used to trigger the states.

isSafeKick: First, the intended ball trajectory vector is calculated. Second, two more
vectors are calculated between the source of the kick and each individual defending robot.
Using a dot product the angle between these two vectors and the trajectory is calculated.
The method returns true if this angle is less than a certain angle which is taken as a
parameter to the method.

isCloserToGoal: This method returns true if Venus is in the best position to defend the
goal and false if the team mate is. The equation of the line from the center of the defending
goal to the position of the enemy robot in possession of the ball is calculated. Then the
perpendicular distance from both Venus and our team mate to that line is obtained. If the
robots are not situated perpendicular, the distance to the attacking enemy is used instead.
The method returns true if Venus is in the best position to defend the goal.

hasBallInRange: The method returns true if the position of the ball is within 15 cm of a
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robot. Note that for Venus this method is overridden by the check from the light sensor as
that is more reliable.

goalsideRobots: When trying to find the best position to move to receive a pass it is
necessary to know about the positions of the enemies. To deduce whether they are not
going to influence the pass, a vector is built between both our team mate and Venus. Two
vectors perpendicular to this line are then constructed that pass through Venus and our team
mate, respectively. These two vectors form a channel and if an enemy robot lies within this
channel it is not considered ’goal-side’.

Priority State Trigger
1 ATTACK GOAL Venus has ball and goal isSafeKick is true for

Venus
2 ATTACK PASS Venus has ball and goal isSafeKick is false and

pass isSafeKick is true for Venus
3 ENEMY1 BALL TAKE GOAL Enemy 1 has ball and Venus isCloserToGoal
4 ENEMY2 BALL TAKE GOAL Enemy has ball and Venus isCloserToGoal
5 ENEMY BALL TAKE PASS Enemy has ball and team mate isCloserToGoal
6 FREE BALL YOURS hasBallInRange is false for every robot
7 RECEIVE PASS Friend hasBallInRange and pass isSafeKick for

team mate
8 FREE BALL NONE GOALSIDE No enemy is in goalsideRobots
9 FREE BALL 1 GOALSIDE Enemy 1 is in goalsideRobots
10 FREE BALL 2 GOALSIDE Enemy 2 is in goalsideRobots
11 FREE BALL BOTH GOALSIDE Both enemies are in goalsideRobots

Table 2: States available in the strategy system

3.4.2 Potential fields

The following graphs were plotted using the command map STATE NAME which is ideal for
visualisation and quick testing of newly defined fields. The graphs below contain quiver
plots of the force acting on Venus at a given point in space. This is drawn on top of a heat
map of the value of the potential field at a given point2.

2Footage of an evolving field paired up with a vision feed can be found at https://patrickgreen.me/

robotics.html.
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FREE BALL YOURS

Forces due to obstacles: The walls exert
a force governed by a 1/r3 law on the pitch
side of the wall where r is the perpendicular
distance to the wall. On the opposite side of
the wall an attractive potential −1/r3 is used
instead to pull any robots into the pitch. An
identical field is used in the penalty box, how-
ever, to avoid getting stuck in a local minima
at the sides, the field inside the box pushes the
robot to the front only and does not attract it
back over the side it came from. As the box is
finite, any position that is not perpendicular
will exhibit a similar force, only r will be the
distance to the closest corner. The robots use
a 1/r2 law where r is the radial distance from
the edge of the robot represented by the solid
circle in red.

Grabbing: The ball uses an attractive ra-
dial field of −1/r2. The amplitude of the field
is larger than that of the robot to enable fast
navigation. Once a potential of −4 is reached,
the grab is initiated using quantised distance
and angle motions enabled by the motor en-
coders. The −4 value has been chosen as it
implies the ball is clear of any obstacles as
otherwise the potential value would be higher.

ENEMY BALL TAKE PASS

Blocking pass: A finite axial field is used to
enable smooth motion during the block of a
pass from any point in the pitch. The points
in question are first rotated so that the field
is flush with the x-axis and the force is calcu-
lated using the following equation and rotated
back. d is the perpendicular distance, a is the
parallel distance to the end with the smaller x
value and b is similar dimension in the exact
opposite direction.(

1√
b2+d2

− 1√
a2+d2

, b
d
√
b2+d2

+ a
d
√
a2+d2

)
Interceptions: When the current potential
of Venus reaches −12, the block is satisfactory
and the robot faces the ball with its grabber
open. When the ball is shot as it is moving,
the FREE BALL YOURS state is activated caus-
ing an attraction to the moving ball.
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ENEMY2 BALL TAKE GOAL (ENEMY1 BALL TAKE GOAL)

Blocking goal: The same field is used from
the state above but for a block between the
goal and an enemy robot. The current satis-
factory potential for this block is −14 in order
to be sure to block the whole goal.

FREE BALL NONE GOALSIDE (FREE BALL 1 GOALSIDE, FREE BALL 2 GOALSIDE)

Optimising position: Given your team
mate is either fetching or has the ball you want
to find the best position to receive a pass. Two
fields are added in order to implement this:

1. The shadowed array blocking the pass.
2. The shadowed array blocking the goal.

This state represents a double blocked pass.
An identical type of field is used in the de-
fence states, however, one end is placed at the
start of the shadow and the other three pitch
lengths away. This is so that Venus is repelled
perpendicular to the shadow and also parallel
around the enemy robots if needs be.

Once a satisfactory potential of 6 is reached,
Venus will turn and wait to except the pass.
As the other robots move, Venus will keep try-
ing to minimise his potential until a value of
6 is obtained.
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FREE BALL BOTH GOALSIDE (FREE BALL 1 GOALSIDE, FREE BALL 2 GOALSIDE)

Local minima: Whilst optimising position
Venus can get stuck as enemy players close up
to defend the same shot. To deal with this, a
timer is used so that if Venus has been sitting
in a unsatisfactory potential for too long, we
remove the least import field. In this case, the
furthest player blocking the goal.

Handling opponents that divide up de-
fensive positions: As outlined in the state
above, this graph represents a double blocked
goal and the final two states that are not
shown are a mixture of this state and the state
above.
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